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Abstract. We develop a biologically inspired method of image processing based on 
synchronization-based performance of oscillatory network with controllable self-organized 
coupling. The oscillatory network, obtained from previously designed biologically 
motivated oscillatory neural network model of the brain visual cortex, provides automatic, 
adaptive and active image segmentation. Being tuned by an image to be processed, the 
network dynamics realizes network decomposition into the set of synchronized ensembles 
of oscillators, corresponding to image decomposition into the required set of image 
fragments. Current network model version provides: a) full segmentation of real grey-level 
and colored mages; b) selective image segmentation (extraction of subset of image 
fragments with brightness values contained inside arbitrary given brightness interval).     
  Key-Words: Image processing, biologically inspired methods, networks of coupled 
oscillators, synchronization. 

  1 Introduction 

Currently there is a significant interest in neuromorphic methods of image processing, 
based on imitation of neurobiological processes in the brain neuronal structures, despite a 
great variety of traditional methods developed in the field of computer vision. Such 
advantages as self-organized automatic performance, capability of adaptive and active 
processing are usually inherent to biologically inspired methods. Specifically, interest in 
oscillatory methods of image processing was related to synchronized oscillations of neural 
activity that were experimentally discovered in the brain visual cortex (VC)  in 1988-1989 
and were confirmed in later experiments [1-3]. The synchronized oscillations are believed 
to accompany visual information processing in the brain visual structures. The attention to 
oscillatory aspects of visual information processing resulted in creation of series of 
oscillatory network models for image processing, demonstrating synchronization capabili-



ties [4-18].  Oscillatory network models developed by D.Wang  and  Z.Li [4-12] are most 
closely related to our model, but nevertheless different. Relation of our model to those by 
D.Wang and Z.Li was discussed in detail in [16]. Our oscillatory network, providing  
dynamical method of image processing, was obtained by reduction from previously 
designed oscillatory network model of the primary visual cortex. The starting model 
simulated self-organized collective behavior of orientation selective cells of the primary 
visual cortex at low (pre-attentive) level of visual information processing. Active network 
unit is neural oscillator, formed by a pair of interconnected cortical neurons. It is a 
relaxational (limit cycle) oscillator with dynamics, controlled by image characteristics.   
Spatial architecture of the 3D starting model imitated the columnar structure of VC. 
Network coupling principle was designed based on known neurobiological data on  
connections  in VC  and also on general principles of connection formation in the brain 
neural structures. The coupling principle of  working 2D oscillatory network model causes 
self-organized emergence of synchronization in the  network and  realizes the simplest type 
of dynamical binding (on brightness). Current model version provides a workable 
dynamical method of image segmentation. It capable to process both grey-level and colored 
real multi-pixel images. Besides, it admits a natural way for selective  image  segmentation, 
that can be regarded as a simple kind of active image processing.  

2 Main Characteristics of the Oscillatory Network 

The 2D oscillatory network is designed for brightness image segmentation tasks. We mean 
image segmentation as   image decomposition into a set of image fragments –   sub-
regions of image pixel massive with constant level of brightness.   Oscillators of the 
network are located at the nodes of two-dimensional square lattice being in one-to-one 
correspondence with pixel array of segmented image. Image segmentation is carried out by 
the oscillatory network via synchronization of network assemblies, corresponding to image 
fragments of various brightness levels. If an image to be segmented is defined by M N× -
matrix [ ]jmI  of pixel brightness values, the network state is defined by M N× - matrix 

ˆ [ ]jmu u=  of complex-valued variables, defining states of all network oscillators. System 
of ODE, governing oscillatory network dynamics, can be written as  
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Here functions ( ; )jm jmu If  define internal dynamics of isolated network oscillators 
whereas the second term defines contribution into dynamics via oscillator coupling.  
Single network oscillator is limit cycle oscillator  defined by a pair of real-valued variables 



1 2,( ).u u  Dynamical  system, governing single oscillator dynamics,  can be written in the 
form of  ODE  for  complex-valued  variable 1 2u u iu= + :  
 

(2)/ ( , ),du dt f u I=
where 
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The limit cycle of dynamical system (2)-(4) is the circle of  radius ρ , circle center being 
located at the point with coordinates 10 20u u ρ= =  in phase plane  1 2( , )u u . Dynamical  
system  (2)-(4) contains the following parameters: the parameter ρ , defining limit cycle 
radius (free parameter which can be specified by arbitrary monotone continuous function 
of brightness, ( )Iρ ρ= ); ω  is the frequency of  free oscillations, *h  is the parameter, 
defining brightness threshold value, below which Hopf bifurcation of converting the limit 
cycle into stable focus occurs, α  is the parameter, defining  quickness of oscillation 
damping after limit cycle converting into focus, σ  is a constant ( 1σ ). Oscillator 
“response” to pixel brightness variation at ( )I Iρ α=  is  depicted in Fig. 1, where  time 
behaviors 1( )u t  and 2 ( )u t  and the corresponding phase trajectory of oscillator dynamical 
system are shown.   

 

 
 

Fig. 1. Oscillator dynamics response to pixel brightness variation 



The values ' 'jj mmW , defining coupling strength of network oscillators (j,m) and 
(j'm'),  are  designed  in  the  form  of  nonlinear functions  dependent on oscillation  
amplitudes (limit cycle radii) of oscillator pair and spatial distance between oscillators 
in the network: 
 

' ' ' ' ' '( , ') (5)(| ' |).jj mm jj mm jj mmW DP r rρ ρ ⋅= −
 

 The  cofactors  ' 'jj mmP , providing  the dependence of  network coupling  on oscillation 
amplitudes, are specified as  

 

0 ' '' ' ' 6( , ) ( ) ( ),jm j mjj mmP hw Hρ ρ ρ ρ −= ⋅
 

where  ( )H x  is a continuous step-function  and 0w  is a constant, defining total strength 

of network interaction. The cofactors ' ' (| ' |)jj mmD r r− ,  providing coupling spatial 
restriction, can be specified by any function, vanishing at some finite distance.  As a result 
any pair of network oscillators is proved to be coupled if they both possess sufficiently 
great oscillation amplitudes and are separated by a distance not exceeding the prescribed 
radius of spatial interaction. Otherwise the connection is absent. 

3  Network  Segmentation Capabilities 

 3.1 Grey-level image segmentation  

The oscillatory network performance consists of two steps: 1) preliminary tuning of 
oscillator dynamics by pixel brightness values of an image to be segmented (after the 
tuning operation  own limit cycle size has been specified for each network oscillator); 2) 
network relaxation into the state of cluster synchronization, that is, to the state, at which 
oscillatory network is decomposed into the set of internally synchronized, but mutually 
desynchronized oscillator ensembles (clusters), each ensemble  being  correspondent to 
appropriate image fragment.  
The gradual type of oscillator response on pixel brightness, guaranteed by oscillator 
dynamics (2-4), plays a crucial role for providing high segmentation accuracy.  An 
improved coupling rule has been also used  besides the initial biologically motivated 
coupling rule (5) to raise segmentation accuracy. It is based on prescribing to each 



oscillator of some “mask”, restricting its coupling “response”. The modified coupling rule 
is defined by modified cofactor P  in  (5),  namely 
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Here ( , )T ρ ∆  defines a “mask”, restricting  the size ∆  of oscillator  interaction vicinity. 
Accordingly to coupling rule (5)  with  P P=  any pair of network oscillators is coupled 
only in the case, if mask supports ,[ ]−∆ ∆  and ', '[ ]−∆ ∆  of both the oscillators are inter-
sected.  
A flexible code ONN was created for computer experiments. An adaptive 5th-order Cash-
Karp Runge-Kutta scheme has been incorporated for the ODE system integration. A series 
of computer experiments on real image segmentation have been performed. The example  
of map fragment segmentation at ( )I Iρ α=  and   coupling  rule  (5) is presented in Fig. 
2, where a) is original image and  b) is segmentation result.  
 
 
 
 

 
 

Fig.  2. Map fragment segmentation  (492×475 pixels). 



3.2   Colored  image segmentation  

 
New ONN code version has been created for colored mage segmentation. At the first step 
the pixel array of an original colored image is decomposed into three sub-arrays, corre-
sponding to red, blue and green components of pixel colors. Further these three sub-arrays 
are processed by the usual ONN code independently. Visualization of segmentation result 
is performed via conjunction of all three sub-arrays into single array. The example of 
colored image segmentation is presented in Fig. 3. (where a) is the original image, b) is the 
final segmentation result). 
 

 
Fig. 4.  Colored image segmentation (524×374 pixels). 

4   Selective Image Segmentation 

The most useful operation that can be easily carried out via the oscillatory network model 
is selective image segmentation.  Selective  segmentation  can be  viewed as simplest type 
of active image processing and consists in extraction of  desirable subset of image 
fragments which brightness values contained inside some given interval. As it is intuitively 
clear, the selective segmentation  can be often more informative compared to usual 
complete segmentation of the same image. Oscillator dynamics (2)-(4) provides very 
natural way of selective segmentation realization.  It is sufficient to introduce new function 



( )Iρ  instead of ( )Iρ  in eq. (3), putting ( ) ( ),I F Iρ ρ=  where  F(I) is a "filtering" 
function. If one desires to select only image fragments of brightness values * **][ ,I I I∈ , we 
choose F(I)  to be equal 1 inside the interval * **[ ],I I  and vanishing outside the interval. 
For example, one can use    

  
* **(1) { [ ] [ ]} 1 (9)( ) 0.5 ( ) ( ) , .F I th I I th I Iγ γ γ= ⋅ − − −  

 
         In the case only the oscillators, corresponding to image fragments with brightness values 

* **],[ ,I I I∈  will be "active" whereas the rest oscillators will drop out of network 
interaction because of zero oscillation amplitudes. Similarly selection of arbitrary 
collection of image fragments of given brightness levels is possible. Fig. 4 demonstrates 
informative  character  of  selective  segmentation. Here  one  can   compare     complete  

 

 
Fig. 5.  Selective image segmentation. 

a) –  original image; b) – complete image segmentation; c) – extraction of several 
the most bright image fragments;  d) – extraction of a set of fragments of middle 
brightness;  e)  – extraction of several the least bright fragments. 

 



segmentation (picture b))  of  the image  (human brain section) with  three different cases  
of selective segmentation (pictures c),  d) and e). In each case of  selective segmentation 
only several image fragments with brightness values inside a narrow interval have been 
selected.   

Conclusion  

Synchronization-based approach of image processing via tunable oscillatory network with 
self-organized coupling is presented. The following advantages are inherent to the 
approach:  
  a)  parallel and automatic character of  processing; 

b) adaptive type of processing (as far as both  background level and noise reduction  can 
be  easily controlled); 
c) active image processing (due to capability of selective segmentation). 

The designed oscillatory network is actually closely related to multi-agent systems – 
distributed networks of active processing units with complicated controllable internal 
dynamics and  reorganizable structure of cooperative connections. 
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